Heat Highway: Graphite’s Liquid-Like Pathway for Heat Dissipation in Electronics

Heat Highway

Researchers at the Institute of Industrial Science, The University of Tokyo use isotopically purified graphite to study the phenomenon of heat flowing like a fluid, which can lead to new heat-sink devices for electronics. Credit: Institute of Industrial Science, The University of Tokyo

Researchers discovered that heat can move like a fluid in purified graphite under specific conditions, leading to more efficient heat removal in electronic devices. The phenomenon, called “phonon Poiseuille flow,” was observed with more than double the heat conductivity of natural graphite and has potential applications in smartphones, computers, and LEDs.

Scientists from the Institute of Industrial Science at The University of Tokyo studied the flow of thermal energy in purified ribbons of graphite and showed that heat can move more like a liquid, rather than diffusing randomly, under certain conditions. This work can lead to more efficient heat removal from electronic devices, including such as smartphones, computers, and LEDs.

Before the modern understanding of thermodynamics, scientists sometimes thought of heat as a fluid called “caloric.” However, we now know that heat is actually the random kinetic energy possessed by the vibrating atoms or molecules that make up a material. Sometimes, the vibrations can be thought of physical particles called phonons, which are the main contributors of heat conduction in <span class="glossaryLink" aria-describedby="tt" data-cmtooltip="

Semiconductors are a type of material that has electrical conductivity between that of a conductor (such as copper) and an insulator (such as rubber). Semiconductors are used in a wide range of electronic devices, including transistors, diodes, solar cells, and integrated circuits. The electrical conductivity of a semiconductor can be controlled by adding impurities to the material through a process called doping. Silicon is the most widely used material for semiconductor devices, but other materials such as gallium arsenide and indium phosphide are also used in certain applications.

” data-gt-translate-attributes=”[{"attribute":"data-cmtooltip", "format":"html"}]”>semiconductors. In a surprising twist, in certain materials like graphite the phonons may indeed behave in a manner very similar to a fluid. However, this theory has remained relatively obscure.

Now, a team of researchers led by the Institute of Industrial Science at The University of Tokyo has used theoretical and experimental results to better understand the fluid-like nature of phonons. They show that when a sample of graphite is made from isotopically pure carbon, meaning that only carbon-12 atoms are present, heat can be conducted much more rapidly, almost like water flowing through a pipe. This was termed “phonon Poiseuille flow,” based on the theory of viscous fluids flowing in a closed tube. The effect was strongest in graphite at a temperature of about 90 Kelvin. However, natural graphite contains about 1% other isotopes of carbon, particularly carbon-13, which limits this effect in natural samples.


“Our study clarified the theoretical criteria for the formation of phonon Poiseuille flow in graphite, a material that shows strong anisotropy, which had not been clear before,” lead author Dr. Xin Huang says. Graphite, also known as pencil lead, is very inexpensive and easy to produce. As a result, it is already being used for heat dissipation in some electronic devices that produce a lot of waste energy during operation. Using purified graphite that had at most 0.02% carbon-13, the team was able to observe a heat conductivity that was more than double the value of natural graphite. The fact that this enhancement only occurred over a specific temperature range was evidence that fluid-like collective motion of phonons was the mechanism.

“In conventional Poiseuille flow, the velocity is highest near the center, which is what we propose happens with the phonons in our experiments,” senior author Professor Masahiro Nomura says. In addition to graphite, this phenomenon has also been observed in solid helium and black phosphorus. Theoretically, this phenomenon is also possible even at room temperature. This work can help keep sensitive computer processors cool, even as they increase their density inside devices.

Reference: “Observation of phonon Poiseuille flow in isotopically purified graphite ribbons” by Xin Huang, Yangyu Guo, Yunhui Wu, Satoru Masubuchi, Kenji Watanabe, Takashi Taniguchi, Zhongwei Zhang, Sebastian Volz, Tomoki Machida and Masahiro Nomura, 19 April 2023, <span class="glossaryLink" aria-describedby="tt" data-cmtooltip="

Nature Communications
&lt;em&gt;Nature Communications&lt;/em&gt; is a peer-reviewed, open-access, multidisciplinary, scientific journal published by Nature Portfolio. It covers the natural sciences, including physics, biology, chemistry, medicine, and earth sciences. It began publishing in 2010 and has editorial offices in London, Berlin, New York City, and Shanghai.&nbsp;

” data-gt-translate-attributes=”[{"attribute":"data-cmtooltip", "format":"html"}]”>Nature Communications.
DOI: 10.1038/s41467-023-37380-5

The work is published in Nature Communications as “Observation of phonon Poiseuille flow in isotopically purified graphite ribbons” (DOI: 10.1038/s41467 023 37380 5).