Origami Robotics: Scientists Push the Boundaries of Autonomous Capabilities

Advertisement
Origami Inspired Robot

An origami-inspired robot designed by a UCLA-led team that can reverse direction when either of its antennae senses an obstacle. Credit: Wenzhong Yan/UCLA

A team led by UCLA created autonomous OrigaMechs without chips, utilizing conductive materials.

Roboticists have adopted a method resembling the traditional art of paper folding to fabricate autonomous machines from thin, pliant sheets. These lightweight robots are more straightforward and cost-effective to manufacture, and their more compact form makes them more convenient for storage and transportation.

However, the conventional requirement of rigid computer chips, which enable advanced capabilities such as sensing, analyzing, and adapting to the environment, adds extra weight to the delicate sheet materials and makes them difficult to fold. As a result, the semiconductor-based components must be added after the robot has been formed into its final shape.

Now, a multidisciplinary team led by researchers at the UCLA Samueli School of Engineering has created a new fabrication technique for fully foldable robots that can perform a variety of complex tasks without relying on <span class="glossaryLink" aria-describedby="tt" data-cmtooltip="

semiconductors
Semiconductors are a type of material that has electrical conductivity between that of a conductor (such as copper) and an insulator (such as rubber). Semiconductors are used in a wide range of electronic devices, including transistors, diodes, solar cells, and integrated circuits. The electrical conductivity of a semiconductor can be controlled by adding impurities to the material through a process called doping. Silicon is the most widely used material for semiconductor devices, but other materials such as gallium arsenide and indium phosphide are also used in certain applications.
Advertisement

” data-gt-translate-attributes=”[{"attribute":"data-cmtooltip", "format":"html"}]”>semiconductors. A study detailing the research findings was published in <span class="glossaryLink" aria-describedby="tt" data-cmtooltip="

Nature Communications
&lt;em&gt;Nature Communications&lt;/em&gt; is a peer-reviewed, open-access, multidisciplinary, scientific journal published by Nature Portfolio. It covers the natural sciences, including physics, biology, chemistry, medicine, and earth sciences. It began publishing in 2010 and has editorial offices in London, Berlin, New York City, and Shanghai.&nbsp;

” data-gt-translate-attributes=”[{"attribute":"data-cmtooltip", "format":"html"}]”>Nature Communications.

Venus Flytrap Like Robot

A Venus flytrap-like robot that envelops a “prey” when both of its jaw sensors detect an object. Credit: UCLA Samueli

By embedding flexible and electrically conductive materials into a pre-cut, thin polyester film sheet, the researchers created a system of information-processing units, or transistors, which can be integrated with sensors and actuators. They then programmed the sheet with simple computer analogical functions that emulate those of semiconductors. Once cut, folded and assembled, the sheet transformed into an autonomous robot that can sense, analyze and act in response to their environments with precision. The researchers named their robots “OrigaMechs,” short for Origami MechanoBots.

“This work leads to a new class of origami robots with expanded capabilities and levels of autonomy while maintaining the favorable attributes associated with origami folding-based fabrication,” said study lead author Wenzhong Yan, a <span class="glossaryLink" aria-describedby="tt" data-cmtooltip="

UCLA
The University of California, Los Angeles (UCLA) is a public land-grant research university in Los Angeles, California. It is organized into the College of Letters and Science and 12 professional schools. It is considered one of the country's Public Ivies, and is frequently ranked among the best universities in the world by major college and university rankings.

” data-gt-translate-attributes=”[{"attribute":"data-cmtooltip", "format":"html"}]”>UCLA mechanical engineering doctoral student.

OrigaMechs derived their computing capabilities from a combination of mechanical origami multiplexed switches created by the folds and programmed Boolean logic commands, such as “AND,” “OR” and “NOT.” The switches enabled a mechanism that selectively outputs electrical signals based on the variable pressure and heat input into the system.

Using the new approach, the team built three robots to demonstrate the system’s potential:

  • an insect-like walking robot that reverses direction when either of its antennae senses an obstacle
  • a <span class="glossaryLink" aria-describedby="tt" data-cmtooltip="
    Venus
    Advertisement
    Venus, the second planet from the sun, is named after the Roman goddess of love and beauty. After the moon, it is the second-brightest natural object in the night sky. Its rotation (243 Earth days) takes longer than its orbit of the Sun (224.7 Earth days). It is sometimes called Earth's &quot;sister planet&quot; because of their similar composition, size, mass, and proximity to the Sun. It has no natural satellites.

    ” data-gt-translate-attributes=”[{"attribute":"data-cmtooltip", "format":"html"}]”>Venus flytrap-like robot that envelops a “prey” when both of its jaw sensors detect an object

  • a reprogrammable two-wheeled robot that can move along pre-designed paths of different geometric patterns

While the robots were tethered to a power source for the demonstration, the researchers said the long-term goal would be to outfit the autonomous origami robots with an embedded energy storage system powered by thin-film lithium batteries.

The chip-free design may lead to robots capable of working in extreme environments — strong radiative or magnetic fields, and places with intense radio frequency signals or high electrostatic discharges — where traditional semiconductor-based electronics might fail to function.

“These types of dangerous or unpredictable scenarios, such as during a natural or manmade disaster, could be where origami robots proved to be especially useful,” said study principal investigator Ankur Mehta, an assistant professor of electrical and computer engineering and director of UCLA’s Laboratory for Embedded Machines and Ubiquitous Robots.

“The robots could be designed for specialty functions and manufactured on demand very quickly,” Mehta added. “Also, while it’s a very long way away, there could be environments on other planets where explorer robots that are impervious to those scenarios would be very desirable.”

Pre-assembled robots built by this flexible cut-and-fold technique could be transported in flat packaging for massive space savings. This is important in scenarios such as space missions, where every cubic centimeter counts. The low-cost, lightweight, and simple-to-fabricate robots could also lead to innovative educational tools or new types of toys and games.

Reference: “Origami-based integration of robots that sense, decide, and respond” by Wenzhong Yan, Shuguang Li, Mauricio Deguchi, Zhaoliang Zheng, Daniela Rus, and Ankur Mehta, 3 April 2023, Nature Communications.
DOI: 10.1038/s41467-023-37158-9

Other authors on the study are UCLA undergraduate student Mauricio Deguchi and graduate student Zhaoliang Zheng, as well as roboticists Shuguang Li and Daniela Rus from the Massachusetts Institute of Technology.

The study was funded by the National Science Foundation. Yan and Mehta are applying for a patent through the UCLA Technology Development Group.

Advertisement