A New Approach to Locomotion for Soft Robotics

Advertisement
Caterpillar Robot Demonstrates Novel Robotic Locomotion

The caterpillar-bot’s movement is driven by a novel pattern of silver nanowires that use heat to control the way the robot bends, allowing users to steer the robot in either direction. Credit: Shuang Wu, NC State University

Scientists at North Carolina State University have showcased a soft robot, designed like a caterpillar, capable of moving forward, backward, and squeezing through tight spaces. The movement of this caterpillar-inspired robot is powered by a unique pattern of silver nanowires that use heat to regulate its bending, giving users the ability to direct the robot in any desired direction.

“A caterpillar’s movement is controlled by local curvature of its body – its body curves differently when it pulls itself forward than it does when it pushes itself backward,” says Yong Zhu, corresponding author of a paper on the work and the Andrew A. Adams Distinguished Professor of Mechanical and Aerospace Engineering at NC State. “We’ve drawn inspiration from the caterpillar’s biomechanics to mimic that local curvature, and use nanowire heaters to control similar curvature and movement in the caterpillar-bot.

“Engineering soft robots that can move in two different directions is a significant challenge in soft robotics,” Zhu says. “The embedded nanowire heaters allow us to control the movement of the robot in two ways. We can control which sections of the robot bend by controlling the pattern of heating in the soft robot. And we can control the extent to which those sections bend by controlling the amount of heat being applied.”

Advertisement

[embedded content]
This video clip shows a caterpillar-inspired crawling-bot passing under a narrow opening by controlling the curvature of its body. Credit: Yong Zhu, NC State University

The caterpillar-bot consists of two layers of polymer, which respond differently when exposed to heat. The bottom layer shrinks, or contracts, when exposed to heat. The top layer expands when exposed to heat. A pattern of silver nanowires is embedded in the expanding layer of polymer. The pattern includes multiple lead points where researchers can apply an electric current. The researchers can control which sections of the nanowire pattern heat up by applying an electric current to different lead points and can control the amount of heat by applying more or less current.

“We demonstrated that the caterpillar-bot is capable of pulling itself forward and pushing itself backward,” says Shuang Wu, first author of the paper and a postdoctoral researcher at NC State. “In general, the more current we applied, the faster it would move in either direction. However, we found that there was an optimal cycle, which gave the polymer time to cool – effectively allowing the ‘muscle’ to relax before contracting again. If we tried to cycle the caterpillar-bot too quickly, the body did not have time to ‘relax’ before contracting again, which impaired its movement.”

Advertisement

The researchers also demonstrated that the caterpillar-bot’s movement could be controlled to the point where users were able to steer it under a very low gap – similar to guiding the robot to slip under a door. In essence, the researchers could control both forward and backward motion as well as how high the robot bent upwards at any point in that process.

“This approach to driving motion in a soft robot is highly energy efficient, and we’re interested in exploring ways that we could make this process even more efficient,” Zhu says. “Additional next steps include integrating this approach to soft robot locomotion with sensors or other technologies for use in various applications – such as search-and-rescue devices.”

Reference: “Caterpillar-inspired soft crawling robot with distributed programmable thermal actuation” by Shuang Wu, Yaoye Hong, Yao Zhao, Jie Yin and Yong Zhu, 22 March 2023, <span class="glossaryLink" aria-describedby="tt" data-cmtooltip="

Science Advances
&lt;em&gt;Science Advances&lt;/em&gt; is a peer-reviewed, open-access scientific journal that is published by the American Association for the Advancement of Science (AAAS). It was launched in 2015 and covers a wide range of topics in the natural sciences, including biology, chemistry, earth and environmental sciences, materials science, and physics.

” data-gt-translate-attributes=”[{"attribute":"data-cmtooltip", "format":"html"}]”>Science Advances.
DOI: 10.1126/sciadv.adf8014

The study was funded by the National Science Foundation and the <span class="glossaryLink" aria-describedby="tt" data-cmtooltip="

National Institutes of Health
The National Institutes of Health (NIH) is the primary agency of the United States government responsible for biomedical and public health research. Founded in 1887, it is a part of the U.S. Department of Health and Human Services. The NIH conducts its own scientific research through its Intramural Research Program (IRP) and provides major biomedical research funding to non-NIH research facilities through its Extramural Research Program. With 27 different institutes and centers under its umbrella, the NIH covers a broad spectrum of health-related research, including specific diseases, population health, clinical research, and fundamental biological processes. Its mission is to seek fundamental knowledge about the nature and behavior of living systems and the application of that knowledge to enhance health, lengthen life, and reduce illness and disability.

” data-gt-translate-attributes=”[{"attribute":"data-cmtooltip", "format":"html"}]”>National Institutes of Health.

Advertisement