Compact Quantum Light Processing: Time-Bending Optical Computing Breakthrough

Advertisement
Quantum States Light Concept

Researchers have demonstrated a scalable method for quantum computing by successfully showing quantum interference among photons using temporal encoding, offering a potential path toward more accessible quantum technologies. Credit: SciTechDaily.com

A leap forward in optical quantum computing.

An international collaboration of researchers, led by Philip Walther at University of Vienna, have achieved a significant breakthrough in quantum technology, with the successful demonstration of quantum interference among several single photons using a novel resource-efficient platform. The work published in the prestigious journal <span class="glossaryLink" aria-describedby="tt" data-cmtooltip="

Science Advances
&lt;em&gt;Science Advances&lt;/em&gt; is a peer-reviewed, open-access scientific journal that is published by the American Association for the Advancement of Science (AAAS). It was launched in 2015 and covers a wide range of topics in the natural sciences, including biology, chemistry, earth and environmental sciences, materials science, and physics.

” data-gt-translate-attributes=”[{"attribute":"data-cmtooltip", "format":"html"}]” tabindex=”0″ role=”link”>Science Advances represents a notable advancement in optical <span class="glossaryLink" aria-describedby="tt" data-cmtooltip="

quantum computing
Performing computation using quantum-mechanical phenomena such as superposition and entanglement.

” data-gt-translate-attributes=”[{"attribute":"data-cmtooltip", "format":"html"}]” tabindex=”0″ role=”link”>quantum computing that paves the way for more scalable quantum technologies.

Interference among photons, a fundamental phenomenon in quantum optics, serves as a cornerstone of optical quantum computing. It involves harnessing the properties of light, such as its wave-particle duality, to induce interference patterns, enabling the encoding and processing of quantum information.

Advertisement

In traditional multi-<span class="glossaryLink" aria-describedby="tt" data-cmtooltip="

photon
A photon is a particle of light. It is the basic unit of light and other electromagnetic radiation, and is responsible for the electromagnetic force, one of the four fundamental forces of nature. Photons have no mass, but they do have energy and momentum. They travel at the speed of light in a vacuum, and can have different wavelengths, which correspond to different colors of light. Photons can also have different energies, which correspond to different frequencies of light.

” data-gt-translate-attributes=”[{"attribute":"data-cmtooltip", "format":"html"}]” tabindex=”0″ role=”link”>photon experiments, spatial encoding is commonly employed, wherein photons are manipulated in different spatial paths to induce interference. These experiments require intricate setups with numerous components, making them resource-intensive and challenging to scale.

In contrast, the international team, comprising scientists from University of Vienna, Politecnico di Milano, and Université libre de Bruxells, opted for an approach based on temporal encoding. This technique manipulates the time domain of photons rather than their spatial statistics.

Resource-Efficient Multi-Photon Processor

Figure 1. Resource-efficient multi-photon processor based on an optical fiber loop. Credit: Marco Di Vita

To realize this approach, they developed an innovative architecture at the Christian Doppler Laboratory at the University of Vienna, utilizing an optical fiber loop (Fig.1). This design enables repeated use of the same optical components, facilitating efficient multi-photon interference with minimal physical resources.

First author Lorenzo Carosini explains: “In our experiment, we observed quantum interference among up to eight photons, surpassing the scale of most of existing experiments. Thanks to the versatility of our approach, the interference pattern can be reconfigured and the size of the experiment can be scaled, without changing the optical setup.”

The results demonstrate the significant resource efficiency of the implemented architecture compared to traditional spatial-encoding approaches, paving the way for more accessible and scalable quantum technologies.

Reference: “Programmable multiphoton quantum interference in a single spatial mode” by Lorenzo Carosini, Virginia Oddi, Francesco Giorgino, Lena M. Hansen, Benoit Seron, Simone Piacentini, Tobias Guggemos, Iris Agresti, Juan C. Loredo and Philip Walther, 19 April 2024, Science Advances.
DOI: 10.1126/sciadv.adj0993

Advertisement